Requirements for Site-Specific Recombination in the Tyrosine-Family Recombinase Active Site
نویسندگان
چکیده
منابع مشابه
Requirements for catalysis in the Cre recombinase active site
Members of the tyrosine recombinase (YR) family of site-specific recombinases catalyze DNA rearrangements using phosphoryl transfer chemistry that is identical to that used by the type IB topoisomerases (TopIBs). To better understand the requirements for YR catalysis and the relationship between the YRs and the TopIBs, we have analyzed the in vivo and in vitro recombination activities of all su...
متن کاملUtilization of Site-Specific Recombination in Biopharmaceutical Production
Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and pr...
متن کاملFLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In th...
متن کاملIntermediates in serine recombinase-mediated site-specific recombination.
Site-specific recombinases are enzymes that promote precise rearrangements of DNA sequences. They do this by cutting and rejoining the DNA strands at specific positions within a pair of target sites recognized and bound by the recombinase. One group of these enzymes, the serine recombinases, initiates strand exchange by making double-strand breaks in the DNA of the two sites, in an intermediate...
متن کاملXer Site Specific Recombination: Double and Single Recombinase Systems
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). Xer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2014
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2013.11.478